2 A Level Mathematics

Pure Mathematics

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

where
$$\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{1 \times 2}x^2 + \dots + \frac{n(n-1)...(n-r+1)}{1 \times 2 \times \dots \times r}x^r + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$e^{x \ln a} = a^x$$

Geometric series

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1 - r} \text{ for } |r| < 1$$

Trigonometric identities

$$sin(A \pm B) = sin A cos B \pm cos A sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2\sin \frac{A+B}{2}\cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos \frac{A+B}{2}\sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Small angle approximations

$$\sin \theta \approx \theta$$

$$\cos\theta \approx 1 - \frac{\theta^2}{2}$$

$$\tan \theta \approx \theta$$

where θ is measured in radians

Differentiation

First Principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f(x)$$
 $f'(x)$

$$\tan kx$$
 $k \sec^2 kx$

$$\sec kx$$
 $k \sec kx \tan kx$

$$\cot kx$$
 $-k \csc^2 kx$

$$\csc kx$$
 $-k \csc kx \cot kx$

$$\frac{f(x)}{g(x)} \qquad \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan kx \qquad \frac{1}{k} \ln|\sec kx|$$

$$\cot kx \qquad \frac{1}{k} \ln|\sin kx|$$

$$\csc kx \qquad -\frac{1}{k} \ln|\csc kx + \cot kx|, \quad \frac{1}{k} \ln|\tan(\frac{1}{2}kx)|$$

$$\sec kx \qquad \frac{1}{k} \ln|\sec kx + \tan kx|, \quad \frac{1}{k} \ln|\tan(\frac{1}{2}kx + \frac{1}{4}\pi)|$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Numerical Methods

The trapezium rule:
$$\int_a^b y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Statistics

Probability

$$P(A') = 1 - P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B \mid A)$$

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A')P(A')}$$

For independent events A and B,

$$P(B \mid A) = P(B)$$

$$P(A \mid B) = P(A)$$

$$P(A \cap B) = P(A) P(B)$$

Standard deviation

Standard deviation = $\sqrt{\text{(Variance)}}$

Interquartile range = $IQR = Q_3 - Q_1$

For a set of n values $x_1, x_2, \dots x_i, \dots x_n$

$$S_{xx} = \Sigma (x_i - \overline{x})^2 = \Sigma x_i^2 - \frac{(\Sigma x_i)^2}{n}$$

Standard deviation =
$$\sqrt{\frac{S_{xx}}{n}}$$
 or $\sqrt{\frac{\sum x^2}{n} - \overline{x}^2}$

Discrete distributions

Distribution of X	P(X=x)	Mean	Variance
Binomial $B(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	пр	np(1-p)

Sampling distributions

For a random sample of n observations from $N(\mu, \sigma^2)$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

Statistical tables

The following statistical tables are required for A Level Mathematics:

Binomial Cumulative Distribution Function (see page 29)

Percentage Points of The Normal Distribution (see page 34)

Critical Values for Correlation Coefficients: Product Moment Coefficient (see page 37)

Random Numbers (see page 38)

Mechanics

Kinematics

For motion in a straight line with constant acceleration:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$s = vt - \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

$$s = \frac{1}{2} \left(u + v \right) t$$